Alabama EPSCoR RII3

Diversity, Education, Outreach and Cross-Cutting Initiatives

Dr. Karen Boykin
AL EPSCoR
Research Education Outreach Coordinator
AEOI as Part of RII-3

ALEPSCoR Education Outreach Initiative (AEOI)

• AEOI Purpose:
 Ensure RII3 Complies with NSF Broader Impact Requirements Efficiently!

• AEOI Functions to:
 – Coordinate Management of Broader Impact Activities
 – Consolidate Broader Impact Data and Perform Research
 – Develop and Maintain Clearinghouse

• AEOI Participants:
 – Coordinator: Dr. Karen Boykin, UA
 – Assisted by: Dr. Jim Gleason, Dr. Aaron Kuntz, Dr. Sam Evers
 – Institutional Activities: Dr. Shaik Jeelani (TU), Dr. Vasily Prokorov (USA), and Dr. Zhigang Xiao (AAMU)
Broader Impact Activities

<table>
<thead>
<tr>
<th>RII3 Proposed AEOI Components</th>
<th>Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Diversity Component (Tuskegee)</td>
<td>$138,800</td>
</tr>
<tr>
<td>1a. REUs, RETs, REHs</td>
<td>$118,300</td>
</tr>
<tr>
<td>1b. Science on Saturdays</td>
<td>$10,500</td>
</tr>
<tr>
<td>1c. Grad Student Workshop</td>
<td>$10,000</td>
</tr>
<tr>
<td>1d. EPSCoR Open House</td>
<td>$10,000</td>
</tr>
<tr>
<td>2. Math Science Circles (U. South Alabama)</td>
<td>$60,000</td>
</tr>
<tr>
<td>3. AAMU EMAP (AAMU)</td>
<td>$25,000</td>
</tr>
<tr>
<td>4. Coordination, Research, Clearinghouse (UA)</td>
<td>$76,200</td>
</tr>
</tbody>
</table>
Strategic Plan

- Promote STEM educational and outreach programs and curricula relevant to nano/bio science and sensors.
- Identify and recruit students to STEM education and research fields.
- Utilizing available human and institutional resources in pursuit of the project’s science and technology plans, including institutional, disciplinary, and demographic/individual diversity.
- Determine reasons why students do not enter Nano/Bio and Sensor STEM fields, leveraging additional NSF funding.
- Conduct workshops, conferences and seminars.
- Dissemination of broader impact component.

ALSO Available to...
- Assist with Integrating Centers with Other Centers (e.g., Partnering)
Diversity Component

• Initial Research Shows:
 – Not Adequately Reaching Certain Groups
 • Women, Native Americans, Hispanics
 • Disabled Populations
 – Doing Well Reaching African American Groups
Diversity Component

• REUs, RETs, REHs
• Recruitment Tools for Centers
 Coordinator: Dr. Shaik Jeelani, TU
 • Assisted by: Dr. Albert Russell and Dr. Melissa Reeves
 • To work with Centers and LSAMP Campus Coordinators
 • Responsibility of TU, assisted by UA AEOI team and RII Centers
• Starts Summer 2009
• Participant Identification NOW
• Based on 7 Campuses

<table>
<thead>
<tr>
<th></th>
<th>REH Program:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Students @ $1,000 ea. – 2 weeks</td>
<td>$500 stipends, $100 travel, $400 research supplies</td>
</tr>
<tr>
<td>REU Program:</td>
<td>21 Students @4,300 each – 8 weeks</td>
</tr>
<tr>
<td></td>
<td>$3,000 stipends, $100 travel, $1,200 research supplies</td>
</tr>
<tr>
<td>RET Program:</td>
<td>7 Teachers @1,000 each – 2 weeks</td>
</tr>
<tr>
<td></td>
<td>$800 stipends, $200 supplies</td>
</tr>
</tbody>
</table>
Diversity Component

- **REU and REH Goals:**
 - Introduce minority students to RII-3 labs.
 - Target nano /bio programs at 4 YR & 2 YR institutions.

- **Milestones/Objectives:**
 - LSAMP campus coordinators to ID students and ensure Center fit
 - Nano/bio programs to ID students

- **Metrics/Deliverables:**
 - Participation numbers, demographics, institutional diversity, geographic diversity.
 - Track did student enter nano/bio & graduate, was graduation in STEM field, particularly nano or bio.
 - Perform post graduate surveys for career choices.
 - Did researchers find these REUs/REHs useful or burdensome?
Diversity Component

• REH Issues Discussed:
 – Supervision Important
 – Placing Graduate Student in charge
 – Restrictions on leaving campus
 – Suggest REH paired with Teacher
 – Follow TEA program model
 – LSAMP campus coordinator to be responsible for students
 – If centers did not believe high school students appropriate, look at involving other related nano or bio groups
Diversity Component

• **RET Goals:**
 - Excite teachers about nano/bio/sensors
 - Identify areas for BRIDGING.
 - Target minority RETs first.

• **Milestones/Objectives:**
 - Bring teachers from HSs, CCs, and 4 year institutions to RII-3 centers for summer experiences.
 - Work with RETs from nano, bio, sensor programs around the state to ID teacher and student participants.
 - Work with LSAMP coordinators to ID RET participants.
 - Work with AMSTI representatives to ID RET participants willing to work with AEOI to determine skill sets of concern.
 - Pair RETs where possible with their own students (REUs or REHs) for material understanding and responsibility.
 - Develop joint publications with RII-3 centers and AEOI.

• **Metrics/Deliverables:**
 - Ask to provide a short evaluation as a team of RETs (identify where possible “pipeline/feeder” teacher opportunities)
 - Call 6 months later and ask to provide thoughts on class impact after returns.
 - Qualitative evaluation.
 - Ask researchers if they found this helpful or burdensome.
Diversity Component

• Science on Saturdays
 – Motivational Tools for Nano/Bio/Sensors
 – Current Program Chemistry Focus
 – Needs addition of Nano/Bio/Sensors student concepts
 – Coordinator: Dr. Shaik Jeelani, TU
 • Assisted by: Dr. Pam Leggett Robinson
 • To work with Centers and LSAMP Campus Coordinators
 • Responsibility of TU, assisted by UA AEOI team and RII Centers
 – Currently Operated at TU
 – RII-3 Grad Students from centers to work on a nano/bio/sensors related presentation for elementary or middle school presentation.
 – Grad students to help with presentation.

• SoS Program:
 • 10 Activities per year
 • SoS to Rotate Campuses
 • Co-Hosted w/ RII Centers
 • Encourage in Rural Areas
 • $1,050 /activity = $10,500
 • Travel to site: $300
 • Materials = $750

Dr. Pam Leggett Robinson: Contact: ?
Diversity Component

• Science on Saturdays Goals:
 – Excite teachers and students about nano/bio/sensors
 – Provide broader science to capture more STEM interest
 – Serve as a tool for AMSTI teachers.
 – Serve to reach minority students and teachers.

• Milestones/Objectives:
 – Generate basic exciting and easy to understand concepts.
 – Work with national NSF and other groups for ideas.
 – Work with AMSTI to publicize upcoming events.
 – Work with LSAMP CCs to identify students and teachers.

• Metrics/Deliverables:
 – Measure attendance.
 – Take quick science surveys of attendees.
 – Teacher/parent content survey.
 – Obtain info on attendee demographics as possible.
 – Capture institutional and geographic diversity info.
 – Number grad students assisting & materials developed
Diversity Component

• Graduate Student Workshop
 – Recruitment Tool to identify future Nano/Bio/Sensors Grad Students
 – Coordinator: Dr. Shaik Jeelani, TU
 • Assisted by: Ms. Sharee Smalls
 • To work with Centers and LSAMP Campus Coordinators
 • Responsibility of TU, assisted by UA AEOI and RII Centers
 – Encouraging TU to Host Year 1
 – To showcase for nano/bio/sensors programs and ideas.
 – If difficult to identify students to attend, suggestion consider using funds for publicity efforts, e.g., developing a TV commercial or program.
 – Could combine with other events/meetings.

• Grad Student Workshop:
 • 1 Event per year
 • Rotate Campuses
 • Co-Hosted w/ RII Centers
 • Encourage with HBCUs and Community Colleges
 • $10,000 per event
Diversity Component

• Graduate Student Workshop

Goals:
 – Reach out to grad students and provide awareness of opportunities in nano/bio/sensors.
 – Provide motivational talks encouraging pursuit of nano/bio/sensors degrees and careers.

• Milestones/Objectives:
 – Provide once per year, rotating RII-3 campuses, 1 day workshop, informational material booths.
 – Provide lab facility tours and talks by RII-3 researchers.

• Metrics/Deliverables:
 – Attendance
 – Encourage post-event questions and track student interest (encourage on-line question submittal)
 – Possibly track students from attendance sheet to see who enrolls and pursues STEM. (May be a difficult task for a one day impact event.)
Diversity Component

- **EPSCoR Open House**
 - Critical component of outreach to inform state representatives and companies about research performed and programs
 - Coordinator: Dr. Shaik Jeelani, TU
 - Assisted by: Ms. Sharee Smalls
 - To work with Centers and LSAMP Campus Coordinators
 - Responsibility of TU, assisted by UA AEOI and RII Centers
 - Encouraging TU to Host Year 1
 - Centers and others involved in nano/bio/ sensors to use as showcase.
 - Could combine with other events/meetings including Grad Student Workshop

- **EPSCoR Open House:**
 - 1 Event per year
 - Rotate Campuses
 - Co-Hosted w/ RII Centers
 - $10,000 per event
Diversity Component

- **EPSCoR Open House Goals:**
 - To inform key sectors of research efforts (government, industry, community, etc.).

- **Milestones/Objectives:**
 - Hold 1 day event annually showcasing RII-3 campuses with lab and facility tours.
 - Provide overview of exciting research and societal impact.
 - Highlight student presentations.
 - Include diverse populations such as 2-4 Yr institutions, HBCU, and community college participants.

- **Metrics/Deliverables:**
 - Attendance
 - Determine methods to generate familiarity with follow-up letters, etc.
 - Track diversity of participants, institutions, and geographic locations.
Math Science Circles

Math Science Circles
- Coordinated by: Dr. Vasily Prokorov (PI) USA
 - Assisted by Dr. Cornilus Pillen (Co-PI)
 - To work with Centers and AEOI as below.
- Currently 9 schools in Mobile Area working with MATH CIRCLES (NASA sponsored)
- NOW to Expand Circles and Develop Addition Experimental “Science” Concept:
 - Researchers give talks at MSC.
 - Center grad student team to develop basic math “toy” word problems related to their research. Ex: nanotube “puzzle” or “lattice” structured problems.
 - Center grad students participate in at least one Math Circle per semester to present materials & work w/ MC team & K-12 students.
 - Training grad students, K-12 teachers, and others to sponsor MSCs in other areas of the state.
 - Materials developed for inclusion in other AMSTI programs statewide and Math Circles Programs Nationwide.

Math Science Circles:
- $60K/year
 - 0.65 mo 2 PIs
 - 2 Math Grad Students ; Trained how to do MCs
 - Summer Training for Others with Travel Support ($9.5K/yr)
Math Science Circles

Math Circles:

- **Spring 2009**
- Hold Mobile Mathematics Olympiad
- Winners participate in Colorado State Olympiad
- Engage Faculty in outreach at local high schools.
 1. Visited LaFlore HS Jan ’09; Discussed STEM opportunities with over 200 African-American students.
 2. Pillen and Prokhorov to visit other local public schools for pilot Math Circles
- Train ASMS faculty Sarah Gelsinger (USA Alumna) in Math Circle activities.
- Developing web pages on acquiring and maintaining a Math Circle library for local schools and other parties.
- Develop sample problem sheets. Problems are culled from copyrighted materials, and have to develop efficient method of attribution and fair use.
- Making contact with Alabama Council of College Teachers of Mathematics to present at their annual meeting.
- 27 Events Fall 2008

Math Science Circles:

- **Spring 2009**
- Recruit graduate students AY 09-10
- Invite external speakers for Spring 2009
 - Invite EPSCoR scientist to Mobile Math Circle for presentation
- Plan local teacher workshop in conjunction with MCPSS and USA- SARIC Summer 2009
- Hold 1 day local teacher workshop in Mobile on Math Circle activities Fall 2009
- Continue Mobile Math Circle with graduate student training
- Complete public school contact to set up school outreach for Spring 2010
- Other items:
 - “USA PIs do not see a use for GRSP students at this time”. Need centers/students input, ideas, and participation to ensure fit with RII-3.
- 7pm Monday/Wednesday evening problem sets and talks
Math Circle Quarterly Report Continued...

Invitations sent to 310 mathematics teachers and their students in Mobile & Baldwin counties.

62 students attended Fall 2008 sponsored events. 17% African American & 38% Female.

<table>
<thead>
<tr>
<th>Fall 2008 (Mobile Math Circle)</th>
<th>Fall 2008 (ASMS Math Circle)</th>
<th>Outside speakers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Topic Areas:</td>
<td>Problem Topic Areas:</td>
<td>Dr. Peter Dragnev, Indiana-Purdue Univ, Talk: “School</td>
</tr>
<tr>
<td>Word, Time & Clock problems</td>
<td>Challenging Algebra Problems</td>
<td>Districts on Mars, Fuel Depots</td>
</tr>
<tr>
<td>Rocket City Math League problems</td>
<td>Challenging Geometry Problems</td>
<td>on Jupiter, Inimical Dictators on</td>
</tr>
<tr>
<td>AMC problems</td>
<td>Advanced Geometry Problems</td>
<td>Neptune?! How to Arrange</td>
</tr>
<tr>
<td>Some combinatorics problems</td>
<td>Selected Olympiad Problems</td>
<td>Points on Sphere “.</td>
</tr>
<tr>
<td>Moscow MC problems</td>
<td>Pigeonhole Principle</td>
<td>Dr. Josh Barnard, USA gave a</td>
</tr>
<tr>
<td>Points on Sphere</td>
<td>Knots</td>
<td>talk “Sudoku déjà vu”.</td>
</tr>
<tr>
<td>Invariants and semiinvariants</td>
<td>Points on Sphere</td>
<td>Dr. David Benko, USA, gave a</td>
</tr>
<tr>
<td>Olympiad & ciphering problems</td>
<td>Sudoku</td>
<td>talk “A random walk on Wall</td>
</tr>
</tbody>
</table>
| Sudoku | Invariants | Street”.
| Euler's Legacy. The Eternal Vision of | Euler's Legacy | |
| Leonard Euler. | Math Model of Stock Prices | |
| Math Movie Night. | | |
| Math Model of Stock Prices | | |
| Linguistics problems | | |
Math Science Circles

• **Math Science Circle Goals:**

 Goal 1: Instill early appreciation of mathematics as a basic skill set for STEM programs, including nano/bio/sensors.

• **Metrics/Deliverables:**

 – Number students impacted annually.
 – Track new and prior Mobile Math Circle participant STEM achievement records.
 – Number of Nano/Bio/Sensors related math problems developed and taught as part of Math Circles and other Math Club programs.
 – Number partnerships developed between club staff, Math Circles staff, RII-3 grad students, and AMSTI teachers.
 – Percentage increase in math course GPA after Math Circles.
 – Survey ranking to determine which problem sets worked best with student and teacher participants.
 – Number of Nano/Bio/Sensors successful problem sets distributed to National level Math Circles and Clubs.
Math Science Circle Goals:

Goal 2: Stimulate early math appreciation within minority student populations.

Metrics/Deliverables:

- Incorporation of 3 high schools in Southwestern Alabama to include primarily African American, Hispanic, and Native American Majority Population institutions.
- Percentage increase in math course GPA after Math Circles.
- Survey ranking of nano, bio, and sensor problem sets.
- STEM higher education enrollment and graduation rates of comparative subset minority students.
- Number of minority and underrepresented group students participating in all math circles and related math clubs in state.
Math Science Circles

• **Math Science Circle Goals:**

 Goal 3: Train graduate students and teachers statewide on how to use problem solving techniques for instilling math appreciation.

• **Metrics/Deliverables:**
 - Number of graduate students and teachers trained statewide annually as part of USA Outreach Program.
 - Number of Math “Science” Circle programs established: continuing and new programs.
 - Funding and other resources identified to provide additional support of statewide math circles and similar programs.
Math Science Circles

• **Math Science Circle Goals:**

 Goal 4: Determine impact of Math Circles and similar programs on STEM degrees and careers.

• **Metrics/Deliverables:**

 – Number of other math club programs identified in the state and working relationships between AEOI and programs developed.

 – Student STEM enrollment numbers from these groups in higher education, STEM focus area, and matriculation rates.

 – Number of best practices techniques developed through partnerships to share with other programs statewide and nationally.
Math Science Circles

• **Math Science Circle Goals:**

 Goal 5: Incorporate Math Circles and RII-3 concepts as a useful AMSTI approved resource for teachers.

• **Metrics/Deliverables:**

 – Number of AMSTI teachers using Math Circle and RII-3 problem set concepts annually.
 – Affiliation acceptance of materials developed by AMSTI.
AAMU EMAP

- AAMU EMAP
- Seed funds for introducing math skill building into freshmen engineering
- Building from prior programs
- Coordinator: Dr. Zhigang Xiao, AAMU
 - With Dr. Kaveh Heidary, Prof. Stoney Massey, Dr. Satilmis Budak
 - Involving: A math mentor and 2 REUs
 - Focus on EE101
- Can be extended further by:
 - Comparison to USA & UA engineering math skills improvement programs. (AEOI)
 - Identify similar engineering “math-skill” improvement programs and track student progress, selecting best practices for impact. (AEOI - $)

- AAMU EMAP
 - $25K per year
 - $22K Stipends
 - $2K Materials
 - $1K Travel
 (UA $1K Assistance)
AAMU EMAP

• AAMU EMAP Quarterly Activities:
• Conducted three meetings to discuss initiatives based on prior student performance.
 – How to enhance math background for success in subsequent engineering classes.
 – Planned activities include:
 • Conduct a math assessment test at start & end of EE101, SP 09.
 • Add math-related class activities to encourage the math improvement.
 • Introduce ALEKS math software into the class. (Meeting held with ALEKS to learn software.)
 • Bringing in student math mentor.
 • Award if student meets target grade.
 • Adding field trip to local company or NASA and Army Labs.
 • Finding two summer REU students – to help develop experiments, problems, and serve as mentors in fall (e.g., providing talks on research, developing project, etc.)

- Spring 2009 Pilot Class
- Summer 09 Training REUs
- Fall 2009 Larger Class
AAMU EMAP

- **EMAP Programs:**
- **Goals:**
 - Serve as a BRIDGE from AMSTI institutions and other schools to STEM areas.
- **Objectives/Milestones:**
 - Work with AMSTI program developers to identify what “math” and science bridging is needed for engineering and other core programs related to nano and bio degrees/careers.
 - Identify/develop methods to stimulate interest and motivate students toward continuing with STEM degrees.
- **Evaluation/Metrics:**
 - Monitor pre and post skills tests.
 - Track degree performance.
 - Compare performance to non E-MAP students. (e.g., to date, 50% E-MAP students retained from the non-calculus pool v. 30% non E-MAP)
AAMU EMAP

• AAMU EMAP Goals:
 Goal 1: To identify the basic math skill sets needed to excel in engineering and sensor sciences (electrical engineering).

• Metrics/Deliverables:
 – Math test performance evaluation to determine key areas for improvement and areas needing improvement.
 – Compare with GPA increase in math and sensor related core courses of attendees v. non-attendees in electrical engineering department and students in college of engineering as a tracking measure for skill set performance.
AAMU EMAP

- **AAMU EMAP Goals:**

 Goal 2: Use basic language of sensor sciences as a platform to explain problems for succeeding in calculus.

- **Metrics/Deliverables:**
 - Number of sensor (and/or nano/bio) problems and programs incorporated.
 - Number of sensor problems identified and developed by math-engineering team for use at calculus level (for use in publishing book).
 - Qualitative math and science attitude survey rankings of students after using problems.
 - Number of STEM degrees awarded as a comparison to those not in program from department or college.
AAMU EMAP

• **AAMU EMAP Goals:**

 Goal 3: Excite faculty and students about science in sensors, bio and nano areas.

• **Metrics/Deliverables:**

 – Qualitative math-science survey.
 – Number of freshmen student participants in EMAP returning to help with future EE101 projects and develop materials for problems or sensor laboratories.
Coordination, Research, Clearinghouse

- Coordination:
 - Monitoring RII-3 Supported Outreach and Diversity Programs
 - Ensuring RII-3 Relevance and Connectivity
 - Assisting with Development
 - Goals, Objectives, Metrics and Data
 - Outreach Activities Currently Underway in RII-3:
 - Leveraging Resources
 - Identifying and Seeking Additional $$ to Expand and Build Partnerships
 - Encouraging Linking RII-3 People with Outreach Programs to Serve as Resources
 - Advertising
 - Partnering, New Programs, and Curriculum
 - Pairing Assistance (AMSTI, CCs, HBCUs, etc.)
 - Website Application
 - Disabled Persons Activities
 - Additional Funding Sources
 - Available to Work w/ Centers/GRSP on Education and Outreach (proposal writing, activities, etc.)

Coordination, Research, Clearinghouse:
- $70K per year / Year 1:
 - Mgmt/Coord: $14.7K
 - Research: $2.5K
 - EMAP Asst.: $1K
 - Grad Student: $6.4K
 - Travel $868 (Modif)
 - OH/Indir/SubKs $45K
Coordination, Research, Clearinghouse

• **Research:**
 – Determined Baseline Participant Data
 – Baseline Program Data
 – Starting Tracking Phase
 • Demographics, Institution, Geographic, etc.
 – Baseline Nano, Bio, Sensor Program Data
 • Identifying Partnering Opportunities, Leveraging Resources, Reducing Duplication, etc.
 – MSP START Research Proposal (Funded at $300,000)
 – Key Student Skill Sets for Nano, Bio, Sensors
 – Diversity, Outreach, and Education Best Management Practices
 • Identifying Assistance Being Provided and Improvements Needed

• **MSP START:**
 • Additional Funding to:
 • Research EPSCoR State Program Effectiveness as Model for Supporting Development of Educational Efforts
 • Establish Partnership Between RII3 Centers, K-20, and Private Sector
 • Planning Grant to Develop Large Scale Proposal
Coordination, Research, Clearinghouse

- **Clearinghouse:**
 - Primary Means of Disseminating Research Data
 - Searchable Web-based Delivery
 - Links to Reports, Papers, Data
 - Baseline Data
 - Follow-up Tracking Data
 - Best Management Practices
 - Demographics, etc.
 - Links to Related Programs
 - Information to Promote/Advertise Programs
 - Stimulating Diversity and Recruitment
Coordination, Research, Clearinghouse

- **Deliverables:**
 - Clearinghouse
 - Baseline Data
 - Tracking
 - Activity Deliverables
 - Funding and Program Development
 - Set of Best Management Practices
AEOI for the RII-3

• To Ensure RII3 Complies with NSF Broader Impact Requirements Efficiently!

• See New Website: http://aeoi.eng.ua.edu

• Questions?

Contact: Dr. Karen Boykin, 205-348-4008